Конструкция

Проще всего понять, как работает теплообменник кожухотрубного типа, можно, изучив его принципиальную схему:

Рисунок 1. Принцип работы кожухотрубного теплообменника.

Рисунок 1. Принцип работы кожухотрубного теплообменника.
Однако, данная схема иллюстрирует лишь уже сказанное: два раздельных, не смешивающихся теплообменных потока, проходящих внутри кожуха и сквозь трубный пучок. Куда нагляднее будет, если схему сделать анимированной.

Рисунок 2. Анимация работы кожухотрубчатого теплообменника.

Рисунок 2. Анимация работы кожухотрубчатого теплообменника.
Данная иллюстрация демонстрирует не только принцип работы и устройство теплообменного аппарата, но и то, как выглядит теплообменник снаружи и внутри. Он состоит из цилиндрического кожуха с двумя штуцерами, трубного пучка в нём и двух распределительных камер по обе стороны кожуха.

Трубы собраны вместе и удерживаются внутри кожуха посредством двух трубных решёток – цельнометаллических дисков с просверленными в них отверстиями; трубные решётки отделяют распределительные камеры от корпуса теплообменника. Трубы на трубной решётке могут крепиться методами сварки, развальцовки или сочетанием этих двух методов.

Рисунок 3. Трубная решётка с развальцованными трубами пучка.

Рисунок 3. Трубная решётка с развальцованными трубами пучка.
Первый теплоноситель попадает сразу в кожух через впускной штуцер и покидает его через штуцер выпуска. Второй теплоноситель вначале подаётся в распределительную камеру, откуда направляется в трубный пучок. Попадая во вторую распределительную камеру, поток «разворачивается» и вновь проходит сквозь трубы к первой распределительной камере, откуда выходит через собственный выпускной штуцер. При этом, обратный поток направляется через другую часть трубного пучка, чтобы не препятствовать прохождению «прямого» потока.

Технические нюансы

1. Следует подчеркнуть, что на схемах 1 и 2 представлена работа двухходового теплообменника (теплоноситель проходит по пучку труб в два хода – прямым и обратным потоком). Таким образом, достигается улучшенная теплоотдача при той же длине труб и корпуса обменника; правда, при этом увеличивается его диаметр за счёт увеличения количества труб в трубном пучке. Есть более простые модели, у которых теплоноситель проходит сквозь трубный пучок лишь в одном направлении:

Рисунок 4. Принципиальная схема одноходового теплообменника.

Рисунок 4. Принципиальная схема одноходового теплообменника.
Кроме одно- и двухходовых теплообменников, существуют также четырёх- шести- и восьмиходовые, которые используются в зависимости от специфики конкретных задач.

2. На анимированной схеме 2 представлена работа теплообменника с установленными внутри кожуха перегородками, направляющими поток теплоносителя по зигзагообразной траектории. Таким образом, обеспечивается перекрёстный ход теплоносителей, при котором «внешний» теплоноситель омывает трубы пучка перпендикулярно их направленности, что также повышает теплоотдачу. Существуют модели с более простой конструкцией, у которых теплоноситель проходит в кожухе параллельно трубам (см. схемы 1 и 4).

3. Поскольку коэффициент теплопередачи зависит не только от траектории потоков рабочих сред, но и от площади их взаимодействия (в данном случае – от совокупной площади всех труб трубного пучка), а также от скоростей теплоносителей, можно увеличить теплоотдачу за счёт применения труб со специальными устройствами – турбулизаторами.

Рисунок 5. Трубы для кожухотрубчатого теплообменника с волнообразной накаткой.
Рисунок 5. Трубы для кожухотрубчатого теплообменника с волнообразной накаткой.
Применение таких труб с турбулизаторами в сравнении с традиционными цилиндрическими трубами позволяет увеличить тепловую мощность агрегата на 15 – 25 процентов; кроме того, за счёт возникновения в них вихревых процессов, происходит самоочистка внутренней поверхности труб от минеральных отложений.

Следует заметить, что характеристики теплоотдачи в значительно мере зависит от материала труб, который должен обладать хорошей теплопроводностью, способностью выдерживать высокое давление рабочей среды и быть коррозионно стойким. По совокупности этих требований для пресной воды, пара и масла наилучшим выбором являются современные марки высококачественной нержавеющей стали; для морской или хлорированной воды – латунь, медь, мельхиор и т.д.

 

АО «ЦЭЭВТ» производит стандартные и модернизированные кожухотрубные теплообменники по современным технологиям для новых устанавливаемых линий, а также выпускает агрегаты, предназначенные для замены выработавших свой ресурс теплообменников. Расчёт теплообменника и его изготовление производятся по индивидуальным заказам, с учётом всех параметров и требований конкретной технологической ситуации.